
CrossTalk—November/December 2014 9

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Brad Hodgins, NAVAIR

Abstract. TxP was created by NAVAIR to help non-software teams define their
own customized team processes, similar to the TSP process enjoyed by software
teams. It takes time for a team to define a customized team process, and during
this time, postmortem analysis needs to evolve as the team’s customized process
evolves. These postmortems will give the team the insight required to see where it
has improved, and where it needs to focus its future improvement efforts on its way
to standing up its customized team process.

Evolving Postmortems
as Teams Evolve
Through TxP

discern what differentiated those process data which led to high-
quality products from those that resulted in low-quality products.
An example of one of these metrics is the appraisal to failure ratio
(A/FR), which is calculated by dividing appraisal costs (time spent
in design and code reviews) by failure costs (time spent in compile
and test). The SEI found that programs with A/FRs greater than
2 have significantly fewer defects discovered in unit testing than
those programs with A/FRs less than 2. This is important, since
fewer defects found in unit testing usually means fewer defects in
the product delivered to the customer. Instead of waiting for SEI to
compile enough data to repeat this kind of analysis for the system
integration test domain, a system integration test team could use
TxP as a checklist for what abilities that team needs to stand up so
that it can maximize its chances of doing system integration testing
as well as a TSP team does software development.

Even with the TxP checklist in their hands, a team cannot simply
‘fill in the blanks’ on day one and stand up their Team Test Process
(TTP). Some abilities, like planning on how many mistakes will
be made by the team in producing a test procedure, can only be
performed after the team has determined a) which mistakes count
in the domain of system integration testing, b) what units to use to
measure the size of a test procedure, and c) how many mistakes

The success that NAVAIR [1] software teams have had us-
ing Team Software Process (TSP) had led some of their parent
organizations to desire to achieve the same level of performance
from their non-software teams. In response to these requests,
NAVAIR got together with the Software Engineering Institute
(SEI) to develop an approach based upon the same fundamental
principles behind TSP (i.e., plan your work, work your plan, and
analyze your data), but with no specific domain discussed in the
methodology. NAVAIR came away from that development effort
with Team Process Integration (TPI), which requires only a day or
two of classroom training [2]. This TPI training can be taught to a
team, software-related or not, to get them off and running with the
process as soon as possible. Please note that since the TPI training
does not include all of the original, software-specific principles of
Personal Software Process (PSP) [3], software teams are encour-
aged to take the PSP training sometime in the near future to ac-
celerate their path towards realizing the full benefits of TSP.

All the performance data shown in the figures are from real
NAVAIR teams applying TSP or TxP while producing their prod-
ucts or providing their services.

What is TxP?
While TSP is a process containing specific activities that a

software team would follow to produce high-quality products in
the domain of software, TxP is a set of generic activities (Table
1) that can be tailored to create a process a team would follow
to produce high-quality products in the domain of “X.” As an
example, a system integration test team would use TxP to create
the Team Test Process (TTP), and a requirements team would
use TxP to create the Team Requirements Process (TRP).

The Path to Applying TxP
While software teams have the option to take two weeks of

PSP training and immediately become familiar with how to develop
software using PSP and TSP methodologies, other teams outside
of software do not have this training available. Some of the metrics
applied by TSP teams were identified only after the SEI had
analyzed thousands of sets of process data from PSP-practicing
individuals. They analyzed the patterns in the process data to

Table 1. TxP Activities list

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Evolving Postmortems as Teams Evolve Through TxP

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Air Systems Command (NAVAIR),Code 414300D,STOP 6308,
1900 N. Knox Road,China Lake,CA,93555-6106

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
TxP was created by NAVAIR to help non-software teams define their own customized team processes,
similar to the TSP process enjoyed by software teams. It takes time for a team to define a customized team
process, and during this time, postmortem analysis needs to evolve as the team?s customized process
evolves. These postmortems will give the team the insight required to see where it has improved, and where
it needs to focus its future improvement efforts on its way to standing up its customized team process.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

10 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

the team makes when producing test procedures. While software
teams come out of the gate with a set of orthogonal defect types
identified by Watts Humphrey [4], a system integration test team
will have to spend significant time logging mistakes of all kinds
before being able to determine which types of mistakes should be
logged. Likewise, while software teams may say with certainty that
they measure the size of their software products in lines of code,
the size measure for a test procedure may not be so obvious. Is it
best measured in terms of the number of ‘verifies’ in the procedure
or the number of steps in the procedure? Only after data has been
logged, collected, and analyzed by the team, will the team under-
stand which the better size measure is. Finally, only after the team
has established which kinds of mistakes should be logged, and
agreed on how they will measure the size of a test procedure, will
they be able to measure the number of mistakes made. This kind
of dependency between the activities causes a team that is starting
from scratch (with only TPI training) to have to pass through a num-
ber of stages (Figure 1) before being able to completely ‘fill in the
blanks’ and stand up its own customized TxP process.

Evolving Postmortems
Even though a team has not completely defined its customized

team processes, it still has a lot of data that can be analyzed to
help the team perform its job better in the next cycle. Showing a
team how it has improved in some aspect is a very strong motivat-
ing factor to help the team understand how easily improvement
can be achieved, and to help it embrace process improvement.
Postmortems are important in sustaining a team’s interest in
process improvement. As a team evolves and begins to use more
complex plans, more extensive postmortems become possible.

Even PSP/TSP-trained software teams have evolving post-
mortems. When a team is first introduced to PSP/TSP, there is
a huge paradigm shift for the team members to adjust to. Even
when the team is sold on TSP as the better way to develop soft-
ware, there is only so much change that the team can handle and
still perform its job of developing software for its customers. Then,
as the team gets comfortable and more consistent at performing
the primary activities of TSP (e.g., launching, logging time, logging
defects, tracking progress, analyzing their data), they begin to look

at executing these fundamental activities in more effective ways.
The AV-8B Joint System/Software Support Activity declared TSP
as their organizational standard for developing software in 2002
and were still evolving its launches and postmortems to become
more efficient and effective in 2008 [5].

NAVAIR has developed a standard set of postmortem topics
that can be piecewise-introduced as a team gains experience and
progresses through the TxP stages on its way to defining its custom-
ized team processes. This allows a team to show management that
the team is improving its performance in some aspect, regardless of
whether the team is just starting with TPI, or well on its way to stand-
ing up its customized team processes. These postmortem topics are
domain-independent and can be used across an organization as a
standard reporting mechanism. This standardization allows organiza-
tional managers to become more familiar with the charts presented
in the postmortem out-briefs by the organization’s various teams,
which, in turn, empowers the managers to question the teams more
thoroughly on why the charts show what they show.

Time-Based Postmortems
The team’s most consistent data at first will be time log

entries. These entries contain who worked on what task, for
how long, and on what date: e.g., Jaime worked on the design
of the database user interface for 15 minutes on Thursday. A
time log entry is made every time any individual logs any time to
any task: e.g., Jaime may have half a dozen entries logged to the
database user interface design task that reflect her stolen mo-
ments during the week to make progress on that design. With
this information, a team can analyze the planned versus actual
weekly time spent by individuals on the project (a.k.a. task time).
As seen in Figure 2, the analysis can even focus on determin-
ing the average actual time logged on only fulltime planned
weeks. In this example, 12 planned hours was fulltime so that
weeks that contain holidays and leave days do not drive the
average actual time per week down artificially. With this insight,
individuals will be more attune to their personal weekly task time
and will be better prepared to understand how much work they
should be able to sign up for during the next cycle’s planning
session. The scatter chart also provides a quick check to ensure
that the team member is maintaining their scheduled hours so
that they do not show themselves logging time on a week they
planned to be gone (this would be a data point up the left side
of the chart), or being gone on a week where they planned to be
working: that data point would be along the bottom of the chart.

By looking at the planned versus actual time spent on compo-
nents (e.g., a user interface, a section of a requirements docu-
ment, a test procedure), the team can understand its accuracy at
estimating the time to create those components. The left chart
in Figure 3 provides the team with general and specific informa-
tion about their estimates. In this case, the value of 0.5018 in
the upper left of the chart indicates that the team is only using
half of the time they thought they would need, and the data
points that land in the upper left and lower right regions of the
chart identify specific components whose planned and actual
times varied greatly from each other. The team can then discuss
these components to understand what made them have actual
times so different from their planned times.

Figure 1. TxP Stages

CrossTalk—November/December 2014 11

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Figure 2. Task Time Charts

Figure 3. Time By Component Charts

Figure 4. Size and Time Estimation Errors by Component

As an example of this discuss, concerning the case shown in
Figure 3, the team found that two data points (one in the upper
left red area and one in the lower right) were Flight Testing-type
components. These were two from a group of 291 Flight Test-
ing-type components and were the only two components that
were significantly off in their planned times. The team concluded
that these two components were simply miss-estimated, and,
while the team is still striving to improve its ability to estimate
Flight Testing-type components, it can understand when one in
a hundred estimates is just plain wrong. The third component
(in the lower right red field) belonged to Activity D, which was a
very volatile topic with many changing requirements. In this case,
this component became much simpler due to a changing re-
quirement but its estimate was not changed to reflect that shift.

By studying the planned versus actual time by type of com-
ponent, the right chart in Figure 3, the team will get insight into
its estimating ability by the various kinds of components it works
on. In Figure 3, we see that the team is doing a great job on
estimating the time to provide software-in-the-loop (SIL) testing,
and landing near the mark when it comes to flight testing and
ground testing, but all this is lost in the weeds when combined
with the massive 100% or greater errors being realized in
estimating activities A, B, C, and D. By showing these catego-
ries separately, the team can recognize its accomplishments in
the first three categories mentioned and identify the need to
improve the way they are estimating activities A, B, C, and D.

Size-Based Postmortems
Once the team has determined how they will measure the sizes

of their various types of components and has begun to record
planned and actual size data on components they have produced,
then additional analysis becomes available to them. Just as TSP-
trained individuals can compute their personal productivity rates,
individuals on a team that logs its time and size data can compute
their personal productivity rates in whatever-units-they-are-count-
ing-with per hour. In addition, the team can utilize scatter charts,
like those shown in Figure 4, to understand whether their ability
to estimate times and sizes is improving from cycle to cycle.

In the example shown, all the data points are along the bottom
half of the chart, showing that this team’s previous cycle had a
trend of consistently overestimating the time to produce a compo-
nent. Along with that, the team can see that its ability to estimate
sizes was mostly in the +/- 50% range, with half of those within
+/- 20%. After completing the current cycle, the team can see
that the improvements it made in how it estimates time have made
a positive difference in that the average time estimate error has
moved closer to zero. Their size estimating ability has not improved,
still mostly in the +/- 50% range with half of those within +/-
20%. Now that they have made a significant improvement in their
time difference errors, they can look to see if they should turn their
attention to the size difference errors next, or whether they need to
continue to work on improving their time difference errors.

Quality-Based Postmortems
Once consistent mistake-related data is available for analysis,

e.g., mistake log entries and mistake type standards, then all
kinds of metrics can be quantified concerning the quality of the

product as well as the quality of the process. Metrics such as
defect injection rates by phase, indicating how frequently they
are making mistakes while they are logging time to a certain
phase of the process, help the team to understand where the
mistakes are being made in the process. With that information,
the team can then discuss if there is anything they can change
on how they perform that phase of the process to reduce the
rate at which mistakes are being made.

Watts Humphrey injected design and code review phases into
the software development process in support of the PSP principle
that if the mistake is fixed as soon as possible after it is made,

12 CrossTalk—November/December 2014

SOFTWARE ENGINEERING TOOLS AND THE PROCESSES THEY SUPPORT

Figure 5. Defects Injected and Removed

Figure 6. TSP Quality Indicators

and fixed by the person who made it, then the cost of fixing that
mistake would be minimized [4]. Building a chart similar to that
shown in Figure 5, the team can see where, in their process, they
are making their mistakes, and where they are fixing their mistakes.
In studying this type of chart, teams may recognize the need to add
additional phases to their current process, or remove phases that
are not providing added value, or see where they are performing
better or worse than the planned performance. Comparison lines
can be added to show the team where they planned on finding
their mistakes to allow the team to recognize where in the process
they are struggling most to meet the plan. In this example, the team
needs to focus on improving its performance during code review.

TxP-Based Postmortems
Once the team has been operating at the Quality stage for

some time, then analysis can start on the accumulated data to
try and identify leading indicators of the quality of the product, i.e.,
the equivalent of an A/FR for a test procedure. This analysis can
likewise be applied to find leading indicators for the quality of the
process. In addition, this analysis can lead to identifying accept-
able thresholds for rates and ratios which can be used to assess
the quality of a plan (Figure 6 shows some of the quality rates and
ratios used in TSP). Identifying these leading indicators and ac-
ceptable thresholds allows the team even more insight into ways of
improving the quality of their plans, processes, and (most important-
ly) products. Only after the team can identify what level of process
performance leads to a quality product can they then, with certainty,
compare planned and actual values of these leading indicators,
rates, and ratios and know which values are more desirable.

Summary
As a team’s process evolves from TPI to a customized team

process, the postmortem analysis of their data needs to evolve too.
The focus of the analysis should be on what is value-added to the
team and that analysis should help them to identify what progress
they have made so far and where they need to continue to focus
their attention. These analysis efforts should peak the team’s inter-
est in process improvement, but will definitely lead to improvements
in planning, product quality, and communication with management.

ABOUT THE AUTHOR

REFERENCES

Brad Hodgins is a TSP/PSP coach and
instructor for NAVAIR at China Lake,
California, where he coaches engineering
teams in the development of high qual-
ity aviation products for the U.S. Navy and
Marine Corps. He is a NAVAIR Associate
Fellow and has been awarded a U.S. Navy
patent for the Learning Applying Mastering
Perfecting (LAMP) model for team process
implementation, evaluation, and improve-
ment. His MS in Computer Science is from
Colorado Technical University.

NAVAIR
Code 414300D
STOP 6308, 1900 N. Knox Road
China Lake, CA 93555-6106
Phone: 760-939-0666
E-mail: bradley.hodgins@navy.mil

1. NAVAIR is the Naval Air Systems Command. NAVAIR procures, develops, tests,
 and supports Naval aircraft, weapons, and related systems. For more information
 about NAVAIR, go to <www.navair.navy.mil>
2. Schwalb, Jeff and Brad Hodgins. Broadening the Ability to Train and Launch
 Effective Engineering and Service Teams. 1 September 2011.
 <http://www.sei.cmu.edu/tspsymposium/past-proceedings/2011/Broadening-
 the-Ability-to-Train.pdf>.
3. Personal Software Process (PSP) is a data-driven method of developing software
 that gives the software engineer insight as to where their process needs to be
 improved for them to produce a higher quality software product. PSP also helps
 to improve their ability to estimate the labor and calendar time required to produce
 that software product. A more thorough description of PSP can be found at
 <http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=5283>
4. Humphrey, Watts S. A Discipline for Software Engineering. Reading, MA:
 Addison-Wesley, 1995.
5. Rickets, Chris and Brad Hodgins. How TSP Implementation Has Evolved at AV-8B.
 1 May 2008. <http://www.ieee-stc.org/proceedings/2008/pdfs/BH1997.pdf>.

mailto:bradley.hodgins@navy.mil
http://www.navair.navy.mil
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2011/Broadening-the-Ability-to-Train.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2011/Broadening-the-Ability-to-Train.pdf
http://www.sei.cmu.edu/tspsymposium/past-proceedings/2011/Broadening-the-Ability-to-Train.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=5283
http://www.ieee-stc.org/proceedings/2008/pdfs/BH1997.pdf

